环境变化与人类健康数值模拟

杨利军

  

杨利军,女,197993日出生于河南汝州(2021-10-03更新)

手机:18337878732;电子邮件:yanglijun@henu.edu.cn

 

  教育经历:

2010.09-2013.06 博士, 中山大学,  信息计算科学专业(导师:杨力华)

2002.09-2005.07 硕士, 河南大学,  应用数学专业(导师:李登峰)

1998.09-2002.07 学士, 河南大学,  数学教育专业

  任职经历:

2016.12-至今, 河南大学, 副教授

2018.07-2019.07,   佐治亚理工学院, 访问学者

2008.07-2016.12,   河南大学, 讲师

2005.07-2008.07,  河南大学, 助教

  最近五(5)年从事过的科研项目:

1.          主持人EEG脑功能网络分析及其在抑郁症辅助识别中的应用(编号212102310305),河南省重点研发与推广专项(科技攻关)项目,2021.01-2022.1210万元

2.          主持人:经验模态分解的关键理论和应用研究(编号11701144),国家自然科学基金青年基金项目,2018.01-2020.12, 20万元

3.          主持人:信号时频分析与包络的数学模型(编号11426087),数学天元基金项目,2015.01-2015.123万元

4.          主持人:经验模态分解的理论和应用研究,河南省高等学校青年骨干教师培养计划(编号2017GGJS020),2018.01-2020.123万元

5.          主持人:单分量信号模型与信号自适应稀疏分解算法研究(编号16A120002),河南省教育厅科学技术研究重点项目,2016.01-2017.123万元

   

  最近五(5)年发表的论文(*标识通讯作者):

1.          Lijun Yang*(杨利军), Sijia Ding, Feng Zhou, Xiaohui Yang and Yunhai Xiao, Robust EEG feature learning model based on an adaptive weight and pairwise-fused LASSO, Biomedical Signal Processing and Control, 68:102728, 2021.

2.          王怡忻,朱湘茹,杨利军*,融合共空间模式与脑网络特征的EEG抑郁识别,计算机工程与应用,2021-7-1.

3.          Yixin Wang, Fengrui Liu and Lijun Yang*(杨利军), EEG-Based Depression Recognition Using Intrinsic Time-scale Decomposition and Temporal Convolution Network, BIBE2021: The Fifth International Conference on Biological Information and Biomedical Engineering, July 2021 Article No.: 5Pages 1–6.

4.          Qun Zhang, Lijun Yang(杨利军) and Feng Zhou*, Attention enhanced long short-term memory network with multi-source heterogeneous information fusion: An application to BGI Genomics, Information Sciences, 553:305-330, 2021.

5.          Lijun Yang*(杨利军), Shuang Li, Zhi Zhang, Xiaohui Yang, Classification of Phonocardiogram signals based on envelope optimization model and support vector machine, Journal of Mechanics in Medicine and Biology, 20(1):1950062(17 pages), 2020.

6.          Lijun Yang*(杨利军), Sijia Ding, Hao Min Zhou and Xiaohui Yang, A strategy combining intrinsic time-scale decomposition and feedforward neural network for automatic seizure detection, Physiological Measurement, 40 (9)(2019) 095004 (15pp), 2019.

7.          Xiaohui Yang, Wenming Wu, Yunmei Chen, Xianqi Li, Juan Zhang, Dan Long, Lijun Yang(杨利军), An integrated inverse space sparse representation framework for tumor classification, Pattern Recognition, 93(2019)293-311.

8.          Wen-Ming Wu, Xiao-Hui Yang, Yun-Mei Chen, Juan Zhang, Dan Long, Li-Jun Yang(杨利军), Chen-Xi Tian, Layer-Wise Pre-Training Low-Rank NMF Model for Mammogram-Based Breast Tumor Classification, Journal of the Operations Research Society of China, 7:515–537, 2019.

9.          Xiao-Hui Yang, Li Tian, Yunmei Chen, Lijun Yang(杨利军), Shuang Xu, Weming Wu, Inverse projection representation and category contribution rate for robust tumor classification, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 17(4):1262-1275, 2020. DOI:10.1109/TCBB.2018.2886334.

10.       Feng Zhou, Lijun Yang(杨利军), Haomin Zhou and Lihua Yang. Optimal Averages for Nonlinear Signal Decompositions—Another Alternative for Empirical Mode Decomposition. Signal Processing, 2016, 121:17-29.