环境变化与人类健康数值模拟

王波

  

王波,女,19762月出生于山东东阿 2021-10-03更新)

手机:18238211836 电子邮件:wb2008@henu.edu.cn

 

  教育经历:

1999.09-2004.06 博士, 山东大学, 计算数学专业(导师:袁益让)

1995.03-1999.07 学士, 山东大学, 计算数学及其应用软件专业(基地班)

  任职经历:

2017.11至今,  河南大学,教授

2015.09-2016.09   美国国家大气研究中心RAL,访问学者

2010.10-2017.10 河南大学,副教授

2009.10-2010.10,   中科院大气所LASG,访问学者

2006.08-2010.09 河南大学,讲师

  科研项目:

1.        主持人:青藏高原地区通用陆面模式参数敏感性及参数校准数值研究(0000A40450), 河南大学新兴交叉及特色学科培育计划, 2014-052019-04, 25万元.

2.        主持人:青藏高原地区陆面特征参数敏感性及参数优化方法研究(2014GGJS-021), 河南省高等学校青年骨干教师资助计划项目, 2015-012017-12, 5万元.

3.        主持人:条件非线性最优扰动方法在中国北方农业产区气候变化可预报性研究中的应用, 中国科学院大气物理研究所LASG开放课题, 2014-012015-12, 5万元.

4.        合作者: Navier-Stokes方程的稳定化多尺度有限元方法及相关问题的研究(10901047), 国家自然科学基金青年基金项目, 2010-012012-12, 18万元.

5.        主持人:非线性最优扰动方法在北方干旱化与人类活动的相互影响研究中的探索(40805020), 国家自然科学基金青年基金项目, , 2009-012011-12, 20万元.

6.        合作者:用条件非线性最优绕动研究ENSO可预报性的年代际变化问题(40221503), 国家自然科学基金委员会, 面上青年基金项目, 2006-012008-12, 26万元.

   

  论文(*标识通讯作者):

1.          Zou GA, Wang B(王波); Tony W.H.Sheu*; On a conservative Fourier spectral Galerkin method for cubic nonlinear Schrödinger equation with fractional Laplacian, Mathematics and Computers in Simulation, 2020, 168: 122-134.

2.          Zou GA*; Wang B(王波); Solitary wave solutions for nonlinear fractional Schrödinger equation in Gaussian nonlocal media, Applied Mathematics Letters, 2019, 88: 50-57.

3.          Xiaolei Wang; Wang B(王波); Guang-an Zou*; Numerical analysis of finite element method for time-fractional Cahn-Hilliard-Cook equation, Mathematical Methods in the Applied Sciences, 2019, 2019(1): 1-17.

4.          Wang B(王波), Qi QQ. Modeling the lake eutrophication stochastic ecosystem and the research of its stability. Mathematical Biosciences, 300(2018): 102–114.

5.          Zou GA, Wang B(王波), Zhou Y*. Existence and regularity of mild solutions to fractional stochastic evolution equations. Mathematical Modelling of Natural Phenomena, 2018, 13, 15 pages.

6.          Zou* GA, Wang B(王波), Stochastic Burgers’ equation with fractional derivative driven by multiplicative noise. Computers and Mathematics with Applications, 2017, 74, 3195–3208.

7.          Wang B.* (王波), Qi QQ. Application of the conditional nonlinear optimal perturbations method in the shallow lake ecological degradation and restoration. Advances in Meteorology, Volume 2015, Article ID 215367, 12 pages.

8.          Wang B.* (王波), Zou GA, and Wang Q. Application of the restrained optimal perturbation method to study the backward heat conduction problem. Applied Mathematics and Computation, 2013, 221: 703-709.

9.          Wang B.* (王波) and Huo ZH. Extended application of the conditional nonlinear optimal parameter perturbation method in the Common Land Model. Advances in Atmospheric Sciences, 2013, 30(4): 1213–1223.

10.       Wang B.* (王波), Zhang PJ, Huo ZH, et al. The sensitivity analysis of a lake ecosystem with the conditional nonlinear optimal perturbation method. Advances in Meteorology, Volume 2012, Article ID 562081, 7pages, doi:10.1155/2012/562081.

11.       [1]Zou GA, Wang B*(王波). Numerical methods for solving the direct and inverse problems of the parabolic equation. Internet Technology and Applications (iTAP), 2011 International Conference on IEEE.

12.       Wang B.* (王波), Zou GA, Zhao P, et al. Finite volume method for solving a one-dimensional parabolic inverse problem. Applied Mathematics and Computation, 2011, 217: 5227-5235.

13.       Wang B.* (王波), Wang JP, Huo ZH, et al. Application of the conditional nonlinear optimal perturbations method in a theoretical grassland ecosystem. Chinese Quarterly Journal of Mathematics, 2010, 25(3): 422-429.

14.       Wang B.* (王波), Wang Q, A finite volume backward Euler difference method for nonlinear parabolic intefro-differential equation. Chinese Quarterly Journal of Mathematics, 2009, 24(3): 370-377.

15.       Wang B.*(王波), Zou GA, Zhao P, A restrained optimal perturbation method for solving the inverse problem in reverse process of convection diffusion equation, Lecture Notes in Computer Science, 2012, 6839: 154-161.